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Previously we have shown that the topos approach to quantum theory of Doering and Isham can
be generalised to a class of categories typically studied within the monoidal approach to quantum
theory of Abramsky and Coecke. In the monoidal approach to quantum theory H∗–algebras provide
an axiomatisation of states and observables. Here we show that H∗–algebras naturally correspond
with the notions of states and observables in the generalised topos approach to quantum theory. We
then combine these results with the †–kernel approach to quantum logic of Heunen and Jacobs, which
we use to prove a structure theorem for H∗–algebras. This structure theorem is a generalisation of the
structure theorem of Ambrose for H∗–algebras the category of Hilbert spaces.

1 Introduction

The present work is part of an ongoing project [10, 11] to bridge the monoidal approach to quantum theory
of Abramsky and Coecke [1], and the topos approach to quantum theory of Butterfield, Doering and Isham
[17, 9]. Both the monoidal and topos approaches to quantum theory are algebraic, in that they seek to
represent some aspect of physical reality with algebraic structures. By taking the concept of a “physical
observable” as a fixed point of reference we cast the difference between these approaches as internal vs.
external points of view. In particular, in the monoidal approach one encodes the notion of “observable”
as an internal commutative algebra (for example a Frobenius algebra [7] or an H∗–algebra [2]) in some
suitable monoidal category A – traditionally the category Hilb of Hilbert spaces and bounded linear maps.
The topos approach to quantum theory, as presented in [12], considers representations of commutative
algebraic structures (for example C∗–algebras, or von Neumann algebras [8]) on Hilb. What makes the
study of these representations useful is that the sets of endomorphisms Hom(H,H) for Hilb carry the
structure of a C∗–algebra. In [10] we showed that the categories considered in the monoidal approach
have a similarly rich algebraic structure on their sets of endomorphisms Hom(A,A), allowing one to take
the external perspective for a broad class of categories A , and not just Hilb. Here we show that there is a
natural way to pass from the internal algebraic structures which represent observables to external algebraic
representations of observables, and hence we show the monoidal approach to quantum theory and the
generalised topos approach to quantum theory have compatible interpretations of states and observables.

In the topos approach to quantum theory [12, 9] for a fixed Hilbert space H, one takes Hilb-Alg(H) to
be the poset of commutative C∗–subalgebras of Hom(H,H) considered as a category and Hilb-AlgvN(H)
its subcategory whose objects are the commutative von Neumann C∗–subalgebras of Hom(H,H). We
will briefly discuss a physical interpretation for this definition. Representing physical systems by C∗–
algebras of the form Hom(H,H) allows us to make calculations which accurately predict the outcomes
of experiments, however it is not at all clear how we are to interpret this algebraic structure, or indeed
quantum theory in general. According to Bohr’s interpretation of quantum theory [6], although physical
reality is by nature quantum, as classical beings conducting experiments in our labs we only have access
to the “classical parts” of a quantum system. Much of classical physics can be reduced to the study
commutative algebras; this approach is carefully constructed and motivated in [21] where the following
picture is given:
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Physics lab → Commutative unital

R–algebra A

Measuring device → Element of the algebra A

State of the observed → Homomorphism of unital

physical system R–algebras h : A→ R
Output of the → Value of this function h(a),

measuring device a ∈ A

Figure 1: Algebraic interpretation of classical physics

In [21] the author stresses that in the interpretation Figure 1. the choice of scalars is unimportant, how-
ever since many measurable quantities in classical physics, length, time, energy, etc., can be represented
by real numbers, R is a reasonable choice. In quantum theory the complex numbers are the traditional
choice of scalars, but one can take any ring, or as we will see a semiring in their place.

According to Bohr’s interpretation having access to only the classical parts of a quantum system
represented by Hom(H,H) means that we only have access to the commutative subalgebras of Hom(H,H).
In the topos approach presented in [12] one considers all of the classical subsystems simultaneously by
considering the topos of presheaves [Hilb-AlgvN(H)

op
, Set]. One presheaf of central importance to the

topos approach is characterised by the Gelfand spectrum. Recall the Gelfand spectrum of a commutative
C∗–algebra A is the set of characters

SpecG(A) = { ρ : A→ C | ρ a C∗–algebra homomorphism }

This defines a functor

Hilb-AlgvN(X)
op Set

SpecG

for each Hilbert space H, with the action on morphisms given by restriction. By the above physical
interpretation of Figure 1. we see this functor as assigning to each classical subsystem the set of possible
states of that system.

While the topos approach introduces new concepts to the study of quantum theory it still ultimately
rests upon the traditional notions of Hilbert spaces and von Neumann algebras. The monoidal approach
to quantum theory [1] is an entirely separate approach to quantum theory, using different mathematical
structures, abstracting away from the Hilbert space formalism altogether.

Definition 1.1. A †–category consists of a category A together with an identity on objects functor
† : A

op →A satisfying †◦† = idA . A †–symmetric monoidal category consists of a symmetric monoidal
category (A ,⊗, I) such that: A is a †–category; † is a strict monoidal functor; and all of the symmetric
monoidal structure isomorphisms satisfy λ−1 = λ †.

Symmetric monoidal categories admit a graphical calculus [22], which we assume the reader is
familiar with.

The category Hilb is the archetypal example of a †–symmetric monoidal category. For finite dimen-
sional quantum mechanics the notion of an observable can be axiomatised internally by commutative
Frobenius algebras [7], and for infinite dimensional quantum mechanics we can encode an observable by
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a commutative H∗–algebra [2]. A concrete H∗–algebra [4] is a (not–necessarily unital) Banach algebra
such that for each x ∈ H there is an element x∗ ∈ H such that for all y,z ∈ H

〈xy|z〉= 〈y|x∗z〉

In [2] the authors give an axiomatisation for H∗–algebras in terms of the monoidal structure of the
category Hilb, which we review in Sect. 3. Because they generalise Frobenius algebras, H∗–algebras are
proposed as a possibly infinite dimensional notion of “observable” in any †–symmetric monoidal category
A .

We are interested in †–symmetric monoidal categories with some additional structure and properties.

Definition 1.2. A †–symmetric monoidal category (A ,⊗, I) is said to be monoidally well–pointed if for
any pair of morphisms f ,g : X ⊗Y → Z we have f ◦ (x⊗ y) = g◦ (x⊗ y) for all x : I→ X and y : I→ Y
implies f = g.

Definition 1.3. A category A is said to have finite biproducts if it has a zero object 0, and if for each
pair of objects X1 and X2 there exists an object X1⊕X2 which is both the coproduct and the product of
X1 and X2. If A is a †–category with finite biproducts such that the coprojections κi : Xi→ X1⊕X2 and
projections πi : X1⊕X2→ Xi are related by κ

†
i = πi, then we say A has finite †–biproducts.

In a category with a zero object 0, for every pair of objects X and Y we call the unique map
X → 0→ Y the zero–morphism, which we denote by 0X ,Y : X → Y , or simply 0 : X → Y . We say that a
pair of composable morphisms f and g are orthogonal if f ◦g = 0.

For a category with finite biproducts each hom-set Hom(X ,Y ) is equipped with a commutative
monoid operation [20, Lemma 18.3] which we call biproduct convolution, where for f ,g : X → Y we
define f +g : X → Y by the composition

X X⊕X Y ⊕Y Y
∆ f ⊕g ∇

where the additive unit is given by the zero–morphism 0X ,Y : X → Y .
Categories with finite †–biproducts admit a matrix calculus [20, Chap. I. Sect. 17.] characterised as

follows. For X =
n⊕

j=1
X j and Y =

m⊕
i=1

Yi a morphism f : X →Y is determined completely by the morphisms

fi, j : Xi→ Yj, and morphism composition is given by matrix multiplication. If f has matrix representation
fi, j then f † has matrix representation f †

j,i.
In Sect. 2 we review previous work [10] in which we showed how the topos approach described above

can be generalised away from Hilb to arbitrary †–symmetric monoidal categories with finite †–biproducts.
In Sect. 4 we show that this framework is versatile enough to easily incorporate aspects of the †–kernel

approach to quantum logic of Heunen and Jacobs [16]. Integrating the †–kernel framework allows us to
prove a structure theorem for H∗–algebras in monoidal categories A which generalises the following
structure theorem of Ambrose for H∗–algebras in Hilb [4].

Theorem 1.4. A concrete commutative H∗–algebra µ : H⊗H → H is isomorphic to a Hilbert space
direct sum µ ∼=

⊕̂
i

µi of one–dimensional algebras µi : C⊗C→ C.

2 Preliminaries

Here we review a construction introduced in [10] which generalises the topos approach of [9, 12]. This is
done using the language of semirings, semimodules [13], and semialgebras.
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Definition 2.1. A semiring (R, ·,1,+,0) consists of a set R equipped with a commutative monoid opera-
tion, addition, + : R×R→ R with unit 0 ∈ R, and a monoid operation, multiplication, · : R×R→ R, with
unit 1∈ R, such that · distributes over + and 0 ·s = s ·0 = 0 for all s∈ R. A semiring is called commutative
if · is commutative. A ∗–semiring, or involutive semiring is one equipped with an operation ∗ : R→ R
which is an involution, a homomorphism for (R,+,0), and satisfies (s · t)∗ = t∗ · s∗ and 1∗ = 1.
Definition 2.2. Let (R, ·,1,+,0) be a commutative semiring, an R–semimodule consists of a commutative
monoid +M : M×M→M, with unit 0M, together with a scalar multiplication • : R×M→M such that
for all r,s ∈ R and m,n ∈M:

1. s• (m+M n) = s•m+M s•n ;

2. (r · s)•m = r • (s•m) ;

3. (r+ s)•m = (r •m)+M (s•m);

4. 0•m = s•0M = 0M;

5. 1•m = m.

Definition 2.3. For R a commutative semiring, an R–semialgebra (M, ·M,1M,+M,0M) consists of an
R–semimodule (M,+M,0M) equipped with a monoid operation ·M : M×M→M, with unit 1M , such that
(M, ·M,1M,+M,0M) forms a semiring, and where scalar multiplication obeys s• (m ·M n) = (s•m) ·M n =
m ·M (s•n). An R–semialgebra is called commutative if ·M is commutative.
Definition 2.4. Let R be a ∗–semiring. An R∗–semialgebra consists of an R–semialgebra (M, ·M,1M,+M,0M),
such that the semiring (M, ·M,1M,+M,0M) and R have a compatible involution, i.e. one that satisfies
(s•m)∗ = s∗ •m∗ for each s ∈ R and m ∈M.

Clearly every ∗–semiring R is an R∗–semialgebra with scalar multiplication taken to be the usual
multiplication in R. Homomorphisms for R∗–semialgebras are defined in the obvious way. A unital
R–subsemialgebra i : N ↪→ M of M is a subset N containing 0M and 1M which is closed under all
algebraic operations. A subsemialgebra N ⊂M consists of a subset N containing 0M and which is closed
under all algebraic operations making N an R–semialgebra in its own right, but possibly with a different
multiplicative unit to M. A (unital) R∗–subsemialgebra of a R∗–semialgebra is a (unital) R–subsemialgebra
closed under taking involutions.

Elements x and y of a semialgebra are said to be orthogonal if x ·y = 0. An element p of a semialgebra
is called a subunital idempotent if p = p · p and there exists q = q ·q, orthogonal to p such that p+q = 1.
A primitive subunital idempotent p is one such that there are no orthogonal subunital idempotents s and t
such that p = s+ t. Subunital idempotents are also called weak projections [14].
Theorem 2.5. For a locally small †–symmetric monoidal category (A ,⊗, I) with finite †–biproducts the
set S = Hom(I, I) is a commutative ∗–semiring.

The biproduct convolution gives us the additive operation, morphism composition gives us the multi-
plicative operation, and the functor † provides the involution. It is shown in [18] that this multiplicative
operation is commutative.
Theorem 2.6. For a locally small †–symmetric monoidal category (A ,⊗, I) with finite †–biproducts
where S=Hom(I, I), for any pair of objects the set Hom(X ,Y ) is an S–semimodule, and the set Hom(X ,X)
is a S∗–semialgebra.

Addition on the set Hom(X ,Y ) is given by biproduct convolution. For a morphism f : X → Y the
scalar multiplication s• f for s : I→ I is defined [15] by

X X⊗ I Y ⊗ I Y
∼ f ⊗ s ∼

For Hom(X ,X) multiplication is given by morphism composition and † provides the involution.
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Definition 2.7. For (A ,⊗, I) a locally small †–symmetric monoidal category with finite †–biproducts
and X an object, we define the category A -Alg(X) to be the category with objects commutative unital
S∗–subsemialgebras of Hom(X ,X), and arrows inclusion of unital subsemialgebras.

For any subset of B⊂ Hom(X ,X) the set B′ = { f : X → X | f ◦g = g◦ f for all g ∈ B } is called the
commutant of B. We define its full subcategory of commutative von Neumann S∗–subsemialgebras

A -AlgvN(X) A -Alg(X)

to have objects those S∗–subsemialgebras A which satisfy the double commutant identity A = A′′.
The following lemma states some well–known properties of the commutant.

Lemma 2.8. Let B and A be subsets of Hom(X ,X)

1. B′ is a unital subsemialgebra of Hom(X ,X);

2. if B is closed under † then so is B′;

3. if A⊂ B then B′ ⊂ A′;

4. all elements of B commute if and only if B⊂ B′.

An object A of A -Alg(X) is maximal if it is not properly contained in any other commutative
subsemialgebra. Being maximal is equivalent to satisfying A = A′.

In [10] we gave a direct generalisation of the Gelfand spectrum of a commutative C∗–algebra.

Definition 2.9. The generalised Gelfand spectrum for the object X in A is the functor

A -Alg(X)
op Set

SpecG

defined on objects SpecG(A) = { ρ : A→ S | ρ an S∗–semialgebra homomorphism } the set of characters,
while the action on morphism is given by restriction (precomposition).

The physical interpretation of Figure 1. remains valid, and we still think of the Gelfand spectrum as
assigning to each classical subsystem the set of possible states of that subsystem. When we take A to be
the category of Hilbert spaces we obtain exactly the category studied in the topos approach to quantum
theory [9, 12], and where the Gelfand spectrum reduces to the conventional notion.

Remark 2.10. A principal result of the topos approach is that the Kochen–Specker Theorem [19], which
asserts the contextual nature of quantum theory, is equivalent to the statement that the Gelfand spectrum
has no global sections [12, Corollary 9.1]. Hence studying the global sections of SpecG allows us to
address a more general notion of contextuality which we develop in [11].

Remark 2.11. The Gelfand spectrum of a C∗–algebra is not just a set, but a compact Hausdorff topological
space. In [11] we showed that for A in A -Alg(X) the Gelfand spectrum SpecG(A) comes naturally
equipped with the structure of a compact topological space.

3 From Internal to External Algebraic Structures

For a †–symmetric monoidal category (A ,⊗, I), an algebra in A consists of a carrier object X , and a
multiplication morphism µ : X⊗X → X ( in the graphical calculus). Dually, a coalgebra in A consists

of a carrier object X , and a comultiplication morphism δ : X → X⊗X ( in the graphical calculus). An
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algebra–coalgebra pair consists of a carrier object with given multiplication and comultiplication maps.
Note that in a †–symmetric monoidal category each algebra (X ,µ) also defines coalgebra (X ,µ†) and
hence every algebra in a †–symmetric monoidal category forms an algebra–coalgebra pair. Pairs of this
type will be referred to as a †–algebra. Consider the following axioms for a †–algebra:

there exists such that = = (U)

= (S)

= (A)

= (C)

for each
x

there exists x̃ such that
x

=
x̃

(H)

Note that since we are considering †–algebras we get the corresponding inverted equations (U), (A)
and (C) for the comultiplication morphism.

Definition 3.1. A commutative H∗–algebra in a †–symmetric monoidal category A is a †–algebra
satisfying axioms (A), (C), (S) and (H).

It is shown in [2, Lemma 5.5] that every unital Frobenius algebra satisfies (H), and hence the authors
propose H∗–algebras as an axiomatisation for “observable” in infinite dimensional quantum mechanics in
the monoidal approach to quantum theory.

For an algebra (X ,µ) the set–like elements (or copyable elements, group–like elements, or classical
elements) are the morphisms α : I→ X satisfying

α

=

α α

Under the interpretation of (X ,µ) as an observable, one typically views the set–like elements as corre-
sponding with the observable outcomes or states associated with that observable. We will require that the
set–like elements of a H∗–algebra satisfy α† = α̃ . Furthermore we will require that a H∗–algebra admits
a family of orthonormal set–like elements, meaning that for set–like elements α and β the composition
α ◦β † : I→ I is the zero–morphism if α 6= β and is the identity morphism if α = β . The cardinality of
the set of set–like elements is the dimension of (X ,µ).

The following theorem shows how the notion of observable in the monoidal approach to quantum
theory – a commutative H∗–algebra (X ,µ) in A – lifts naturally to the notion of observable in the
generalised topos approach – a commutative von Neumann S∗–semialgebra X in A -AlgvN(X).



Dunne 7

Theorem 3.2. Let A be a monoidally well–pointed †–symmetric monoidal category with finite †–
biproducts, and let (X ,µ) be an H∗–algebra in A . Consider the set of endomorphisms on X

R(µ) = { Rx =

x

| for all points
x
}

The commutant R(µ)′ is a maximal commutative von Neumann S∗–semialgebra. Moreover, if (X ,µ)
satisfies (U) then R(µ) = R(µ)′.

Proof. It is easy to verify from axioms (A) and (C) that the elements of R(µ) commute with one another,
and hence by Lemma 2.8.4. R(µ) ⊂ R(µ)′. By the (H) axiom R(µ) is closed under † and by Lemma
2.8.2. so is R(µ)′. By Lemma 2.8.1. R(µ)′ is closed under the algebraic operations and hence R(µ)′ is a
commutative S∗–semialgebra.

The set R(µ)′ is a maximal commutative von Neumman S∗–semialgebra if and only if R(µ)′ = R(µ)′′.
Since R(µ) is commutative, Lemma 2.8.4. implies R(µ) ⊂ R(µ)′, and therefore by Lemma 2.8.3.
R(µ)′′ ⊂ R(µ)′, and hence to prove maximality of R(µ)′ it is enough to show R(µ)′ ⊂ R(µ)′′, which by

Lemma 2.8.4. is equivalent to all elements of R(µ)′ commuting. Consider h ∈ R(µ)′, then if for all
x

x h
=

x

h
then by well–pointedness h

=
h

(1)

Hence for g and h in R(µ)′ we have

h

g =

h
g

=
h

g

= hg =

g

h

=
g

h

=

g

h

and hence R(µ)′ ⊂ R(µ)′′, as required.
If (X ,µ) is unital then for each h ∈ R(µ)′ we have

h =
h

=
h

and hence h ∈ R(µ), and therefore R(µ) = R(µ)′, as required. �

Definition 3.3. Given an H∗–algebra (X ,µ) we say that R(µ)′ is the S∗–semialgebra generated by (X ,µ).

Hence an “observable” in the monoidal approach – an H∗–algebra – gives rise to an “observable”
system in the topos approach. Next we show that the notion of states in the former – set–like elements –
determine states in the latter – elements of the Gelfand spectrum.

The next theorem shows how the set–like elements naturally form a subset of the spectrum.
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Theorem 3.4. Let (X ,µ) be an H∗–algebra with orthonormal set–like elements and X the von Neumann
semialgebra it generates. Each set–like element α of (X ,µ) determines an S∗–semialgebra homomorphism
ρα : X→ S defined as

f 7→
α

α

f

Proof. It is easy to check ρα preserves zero, the multiplicative unit, that it respects the dagger, that it
preserves biproduct convolution. To see ρα preserves multiplication consider

α

α

f

g =

α

α

f

g

α

α
=

α

f

g

α

α
=

α

g

α

α

f
=

α

g

α

α

f
α

and hence ρα(g f ) = ρα(g)ρα( f ). �

4 A Structure Theorem for H∗–Algebras

In this section we incorporate concepts from a categorical approach to quantum logic [16] into the
framework and show that in the presence of this additional structure the external representations of an
H∗–algebra can be used to determine the structure of that H∗–algebra. This theorem is a generalisation of
Theorem 1.4, a structure theorem for concrete H∗–algebras.

Definition 4.1. A †–category A with zero object 0 is said have †–kernels if for every morphism f : X→Y
an equaliser k : K→ X of f and the zero map 0 : X→Y exists and satisfies k† ◦k = idK . We call k : K→ X
the kernel of f .

Since A is a †–category if it has †–kernels then it also has †–cokernels, defined dually as a coequaliser.

Definition 4.2. A morphism f : X → Y in a †–kernel category is said to be zero–epi if for g : Y → Z
g◦ f = 0 implies g = 0. A morphism f is said to be zero–mono if f † is zero–epi.

It is shown in [16, Sect. 4.] that in a †–kernel category the collection of zero–epis and †–kernels form
an orthogonal factorisation system, and as a consequence every morphism f : X → Y has a factorisation
m◦ e where m : Z→ Y is a †–kernel and e : X → Z is zero–epi which is unique up to unique isomorphism.

Note that each coprojection κX : X → X ⊕Y is a †–kernel. We will require a level of compatibility
between the †–kernel structure and the †–biproduct specified in the following definition.

Definition 4.3. For A a †–category with †–kernels and finite †–biproducts, we say that the †–biproducts
are complemented if for every †–kernel k : X → Y then there exists X such that Y ∼= X⊕X with k the first
coprojection.

Equivalently, A is complemented if every †–kernel is a coprojection for a †–biproduct. Throughout
this section we let A be a †–symmetric monoidal category with †–kernels, and finite complemented
†–biproducts.

Lemma 4.4. Let A be a †–kernel category. Let f : X → Y be a morphism, if f † ◦ f = 0 then f = 0.
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Proof. let k ◦ e = f be the zero–epi †–kernel factorisation, then we have f † ◦ f = e† ◦ k† ◦ k ◦ e = e† ◦ e.
Since e is zero–epi we have f † ◦ f = 0 implies e† = 0 which implies f = 0, as required. �

We call a morphism f : X → X normal if it commutes with its own adjoint, that is, f † ◦ f = f ◦ f †.
Clearly if a morphism f : X → X belongs to some X in A -AlgvN(X) then f must be normal. Normal
morphisms in the category Hilb admit a well known spectral decomposition. Here we show that normal
morphisms in general admit a similar structure.

Lemma 4.5. Let A be a †–kernel category with finite complemented †–biproducts. A normal morphism
f : X → X is of the form f1⊕0 : K⊕K→ K⊕K for f1 a zero–epi.

Proof. Suppose f : X → X is normal and let f = k ◦ e be its zero–epi †–kernel factorisation where
k : K→ X .

By the assumption that A has complemented finite †–biproducts we have X ∼= K⊕K. Hence we
have the matrix representation f =

( f1 f2
f3 f4

)
. It is easy to see that f2 = 0 and f4 = 0 and hence we have

f =
( f1 0

f3 0

)
and f † =

(
f †
1 f †

3
0 0

)
. Therefore f ◦ f † =

( f1 f †
1 f1 f †

3

f3 f †
1 f3 f †

3

)
and f † ◦ f =

(
f †
1 f1+ f †

3 f3 0
0 0

)
. If f is normal then

we have f3 f †
3 = 0, and hence by Lemma 4.4 we have f3 = 0 and therefore f =

( f1 0
0 0

)
as required.

The zero–epi e : X → K has matrix representation e =
(

f1 0
)

and it is easy to verify that e is zero–epi
iff f1 is. Hence f has a factorisation k ◦ f1 ◦ k†, where k is a †–kernel, f1 is a zero–epi and k† is a
†–cokernel. �

A family of morphisms {gi : X → Y} is said to be jointly zero–epi if f ◦gi = 0 for all gi, then f = 0.
We will say that such a jointly zero–epi family forms a cover of Y .

We will ask that the set–like elements of (X ,µ) form a cover for X . The set–like elements of an algebra
forming a cover is a far weaker notion than that of an algebra having enough set–like elements, which
means that the set–like elements of (X ,µ) separate all morphisms out of X . For example, H∗–algebras in
Rel typically do not have enough set–like elements.

In [16] an object X in a †–kernel category is said to be KSub–simple if every †–kernel k : Y → X is an
isomorphism. The monoidal unit in Hilb and Rel is KSub–simple. Note that if the monoidal unit of a
monoidal category is KSub–simple that the semiring of scalars has no zero–divisors.

We now prove an important lemma which lies at the heart of the proof of the main structure theorem.

Lemma 4.6. Let A be a †–symmetric monoidal category with †–kernels such that the monoidal unit is
KSub–simple. Let (X ,µ) be an H∗–algebra in A with covering orthogonal set–like elements and let X be
the von Neumann S∗–semialgebra generated by (X ,µ). There is a set of orthogonal primitive subunital
idempotents in X corresponding with the set–like elements of (X ,µ).

Proof. Let α be a set–like element and consider Rα . By Lemma 4.5 Rα =
(

α1 0
0 0

)
, for α1 a zero–epi. Now

consider g in X′, with corresponding matrix representation g =
( g1 g2

g3 g4

)
. Since g◦Rα = Rα ◦g we have( g1α1 0

g3α1 0

)
=
(

α1g1 α1g2
0 0

)
. Since α1 is zero–epi and g3α = 0 we conclude g =

( g1 g2
0 g4

)
.

Since g◦R†
α = R†

α ◦g we have
(

g1α
†
1 0

0 0

)
=
(

α
†
1 g1 α

†
1 g2

0 0

)
. and since α

†
1 is zero–mono we have g2 = 0

and hence g =
( g1 0

0 g4

)
. Clearly for eα =

( id 0
0 0

)
and eα =

( 0 0
0 id
)
, we have g ◦ eα = eα ◦ g =

( g1 0
0 0

)
and

g◦eα = eα ◦g =
( 0 0

0 g4

)
and hence eα and eα are elements of X′′ and hence, by Theorem 3.2, are elements

of X. It is easy to verify that the morphisms eα and eβ are orthogonal if and only if the set–like elements
α and β are orthogonal.

We have shown the existence of a family of subunital idempotents eα . It remains to show that these
subunital idempotents eα are primitive. Suppose there are subunital idempotents e1 and e2 in X such that
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e1 + e2 = eα . Since e1 belongs to X, and since X is maximal by Equation 1 in the proof of Theorem 3.2
we have

e1
=

e1

Define γ1 = e1 ◦α and γ2 = e2 ◦α . It is easy to check that γ1 and γ2 are orthogonal set–like elements and
that γ

†
1 = γ̃1, and γ

†
2 = γ̃2. By Lemma 4.4 α† ◦ γ1 and α† ◦ γ2 are non–zero, and since I is KSub–simple

their product is non–zero and therefore

γ1

α

γ2

α
=

γ1

α

γ2

=
α

γ1

γ2

=
α

γ1

γ2

γ1

but γ
†
2 ◦ γ1 is zero and hence we have a contradiction, and so no such e1 and e2 can exist. �

For X the S∗–semialgebra generated by an H∗–algebra (X ,µ), Lemma 4.6 states that for the elements
eα the subsemialgebras eiX⊂ X are indecomposable subsemialgebras.

Recall Theorem 1.4 states that a H∗–algebra is a Hilbert space direct sum of one–dimensional algebras.
The Hilbert space direct sum is not a categorical product or coproduct, but is a subdirect product (or
subdirect union [5]). In universal algebra an algebraic gadget A (e.g. a ring, vector space, semiring,
lattice or boolean algebra) is a subdirect product if there are objects Ai such that there is an inclusion
A ↪→∏i Ai such that for each projection πi : ∏i Ai→ Ai the composition A ↪→∏i Ai→ Ai is surjective.
The Hilbert space direct sum

⊕̂
i

Hi of a family of Hilbert spaces {Hi}i has as elements the sequences

(x1,x2, ...) ∈∏i Hi which are square summable, i.e. ∑i ||xi||2 < ∞, and is a subdirect product of vector
spaces. The Hilbert space direct sum of a finite family is a finite †–biproduct, however for infinite families
of Hilbert spaces the Hilbert space direct sum is not a categorical product nor a coproduct, neither of
which exist for infinite families of Hilbert spaces. The direct sum does retain some of the properties of a
product and coproduct: there are a family of orthogonal †–kernels κ : Hi→

⊕̂
i

Hi which are jointly epi,

that is, if for all i we have f ◦πi = g◦πi then f = g. Given the family {Hi}i this object
⊕̂

i
Hi is the unique

Hilbert space admitting such a family of jointly epi †–kernels.
Definition 4.7. A †–kernel category has sharp †–kernels if every jointly zero–epi family of †–kernels is
jointly epi.

For example, the categories Hilb and Rel have sharp †–kernels.
Definition 4.8. Let A be a †–kernel category. We say that A has internal direct sums if for a set of
objects {Xi} there exists an object

⊕̂
i

Xi unique up to isomorphism together with a family of pairwise

orthogonal †–kernels κi : Xi→
⊕̂

i
Xi which are jointly epi.

Given families of morphisms fi : Xi→Yi, if there exists a morphism f̂ such that for each i the diagram

Xi Yi

⊕̂
i

Xi
⊕̂

i
Yi

fi

f̂
ki li
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commutes, then we denote f̂ =
⊕̂

i
fi.

In the category Hilb f̂ exists if and only if there exists N ∈ N such that || fi|| ≤ N for all i.
It follows from [3, Proposition 11.6] (as an internal direct sum is an extremal mono–source) if the

product of the family {Xi} exists (e.g. if the family is finite, or if all biproducts in A exist) then
⊕̂

i
Xi and⊕

i
Xi coincide.

For the family of indecomposable subsemialgebras ei X⊂X we can take the coproduct (in the category
of S∗–semialgebras with homomorphisms not necessarily preserving the multiplicative unit) of this family

∏

i ei X which consists of sequences of elements (x1,x2, ...) where xi ∈ eiX such that all but a finite number
of elements are zero. The product ∏ i eiX consists of all sequences (x1,x2, ...) where xi ∈ eiX. We have

∏

i ei X ↪→ X ↪→∏i eiX, and hence it is easy to see that X is a subdirect product of its indecomposable
S∗–subsemialgebras ei X ⊂ X. Clearly if A has all biproducts, or if (X ,µ) is finite dimensional then
X∼= ∏ i ei X.

Let (A ,⊗, I) be a †–symmetric monoidal category with †-kernels. We say that A has distributive
internal direct sums if they satisfy X⊗ (

⊕̂
i

Yi)∼=
⊕̂

i
(X⊗Yi).

We are now in a position to state and prove the main structure theorem.

Theorem 4.9. Let A be a †–symmetric monoidal category with KSub–simple unit, sharp †–kernels and
finite complemented †–biproducts. Let X be the S∗–semialgebra generated by (X ,µ), an H∗–algebra
in A with covering set–like elements. Let eiX⊂ X be the indecomposable subsemialgebras on X with
ei = idXi⊕0. If A has distributive internal direct sums then µ : X⊗X → X is completely determined by
an internal direct sum of morphisms µi : Xi⊗Xi→ Xi.

Proof. Each ei : X → X is of the form ei = idXi⊕0 : Xi⊕Xi→ Xi⊕Xi for some †–kernel ki : Xi→ X and
where ei = ki ◦ k†

i . Consider the morphisms µ ◦ (ki⊗ k j) : Xi⊗X j→ X , we have

ki k j = ei e j

ki k j
=

ki k j

ei

e j

and hence if i 6= j then µ ◦ (ki⊗ k j) : Xi⊗X j→ X is the zero–morphism.
Now define the family of objects Xi, j, where Xi, j = Xi if i = j and Xi, j = 0 if i 6= j. We have a jointly

zero–epi family of pairwise orthogonal †–kernels ki : Xi→ X and hence X ∼=
⊕̂
i, j

Xi, j and if internal direct

sums are distributive we have X⊗X ∼= (
⊕̂

i
Xi)⊗ (

⊕̂
j

X j)∼=
⊕̂
i, j
(Xi⊗X j).

Now define µi, j : Xi⊗X j→ Xi, j as k†
i ◦µ ◦ (ki⊗ ki) if i = j and the zero morphism when i 6= j. Then

µ : X⊗X → X is isomorphic to
⊕̂
i, j

µi, j :
⊕̂
i, j
(Xi⊗X j)→

⊕̂
i, j

Xi, j. Since the only non–zero terms are for i = j

the morphism µ is completely determined by the family µi = µi,i : Xi⊗Xi→ Xi as claimed. �

Example 4.10. In [2] it is shown that a commutative H∗–algebra µ : A×A→ A in Rel, the category of
sets and relations, is a disjoint union of abelian groups. Applying Theorem 4.9 to (A,µ), the components
µi : Ai×Ai→ Ai are exactly the abelian groups making up (A,µ).
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