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Introduction

Since the formulation of classic no-go theorems by Bell [4] and Kochen-Specker [12], contextuality has
gained great relevance in the development of quantum information and computation. This key character-
istic feature of quantum mechanics represents one of the most valuable resources at our disposal to break
through the limits of classical computation and information processing, with various applications e.g. in
quantum computation speed-up [11, 16] and in device-independent quantum security [10]

Of particular interest is the notion of strong contextuality [3], which was originally shown to arise in
quantum mechanics by Greenberger, Horne, Shimony, and Zeilinger (GHSZ) [8, 9]. In 1990, Mermin
presented a simpler proof of this phenomenon, which rests on deriving an inconsistent system of equa-
tions in Z2, and became known in the literature as the original “All-vs-Nothing” (AvN) argument [14].
Recent work on the mathematical structure of contextuality [3] allowed a powerful formalisation and
generalisation of Mermin’s proof to a large class of examples in quantum mechanics using stabiliser
theory [2]. We take advantage of this framework in conjunction with the graph state formalism to prove
that every AvN argument for an n-qubit stabiliser state can be reduced to an AvN proof for three qubits
which are local Clifford-equivalent to the tripartite GHZ state. This result is achieved through the proof
of the AvN triple theorem, previously conjectured in [1], which provides a combinatorial characterisation
of AvN arguments for stabilisers. This new description is used to develop a computational method to
identify all the AvN arguments in Z2 on general n-qubit stabiliser states. We also present new insights
into the relationship between contextuality and logical paradoxes.

1 All-vs-Nothing Arguments

Mermin’s original formulation Consider a tripartite measurement scenario where each party i =
1,2,3 can perform Pauli measurements in {Xi,Yi} on the GHZ state 1/

√
2(|000〉+ |111〉) with outcomes

in {0,1}.1 It can be shown that the possible joint outcomes must satisfy the following equations:

X1⊕X2⊕X3 = 1
X1⊕ Y2 ⊕ Y3 = 0

Y1⊕X2⊕ Y3 = 0
Y1⊕ Y2 ⊕X3 = 0.

1It is convenient to relabel +1,−1,× as 0,1,⊕ respectively. The eigenvalues of a joint measurement A1⊗A2⊗A3 are the
products of eigenvalues at each site, so they are also ±1 Thus, joint measurements are still dichotomic and only distinguish
joint outcomes up to parity. This is still true for general n-partite scenarios.
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This system does not admit any solution, which means that there is no deterministic assignment of values
to each measurement consistent with the events deemed possible by the empirical model. We conclude
that the model is strongly contextual.

The stabiliser world A general n-partite measurement scenario can be modelled by the Pauli n-group
Pn and its local action on the Hilbert space Hn := (C2)⊗n of n-qubit states. To any subgroup S ⊆ Pn we
associate its stabiliser VS, i.e. the vector space of states stabilised by the elements of S.2 Every subgroup
S gives rise to an empirical model where the n parties can perform joint measurements contained in S on
a state in the stabiliser VS. This allows one to generalise Mermin’s AvN argument to stabiliser states.

Because of footnotes 1 and 2, given a P ∈ Pn and a state |ψ〉 ∈ Hn stabilised by P, the possible joint
outcomes of the joint measurement described by P must satisfy

⊕n
i=1 Pi = 0 if the phase of P is +1, or⊕n

i=1 Pi = 1 if the phase of P is −1. Therefore, to any subgroup S of Pn we can associate an XOR theory
T⊕S constituted by all the equations defined above. We say that S is AvN if T⊕S is inconsistent and we
have the following result from [2].

Proposition 1. Any AvN subgroup of Pn gives rise to a strongly contextual empirical model admitting
an AvN argument.

Galois connections and relations with logic There is a well-known correspondence between the rank
of a subgroup S of Pn and the dimension of its stabiliser VS [6]:

rank S = k ⇔ dimVS = 2n−k. (1)

We formalise and generalise this link by introducing the following Galois connection:

SubGrp(Pn) ←→ SubSp(Hn)
S 7−→ VS⋂

v∈V (Pn)v ←−[ V.
(2)

where (Pn)v denotes the isotropy group of v∈V . The relation (1) can be recovered as a mere consequence
of the fact that this Galois connection is tight in the sense of [15]. This formal description of the link
between subgroups of Pn and their stabilisers allows us to establish a relation between (2) and the Galois
connection between syntax and semantics in logic [18]:

SubGrp(Pn) SubSp(Hn)

Theories P(Struct)

T⊕ M⊕ :=⊥ ◦T⊕◦ ⊥
⊥

⊥

where T⊕ is the function mapping a subgroup S to its XOR theory T⊕S . In particular it can be shown that
the pair of maps 〈T⊕,M⊕〉 constitutes a monomorphism of adjunctions [13] which maps AvN empirical
models to logical paradoxes.

2Note that subgroups of Pn which stabilise non-trivial subspaces must be commutative, and only contain elements with
global phase ±1.
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2 Characterising AvN Arguments

The general theory of AvN arguments described above raises the natural question of whether it is possible
to idenfity the stabiliser states admitting this type of proof of contextuality. A sufficient condition for the
existence of an AvN argument is obtained through the notion of AvN triple [2]. An AvN triple is a triple
〈e, f ,g〉 of elements of Pn which satisfy special combinatorial properties. We have the following result
from [2]:

Theorem 2. Any subgroup S of Pn generated by an AvN triple is AvN.

The AvN triple theorem and its consequences We prove the converse of Theorem 2, which leads to
the formulation of the AvN triple theorem:

Theorem 3 (AvN triple theorem). A subgroup S of Pn is AvN if and only if it contains an AvN triple.

The theorem is proved for graph states, which are special types of multi-qubit states that can be
represented by a graph. It is known from [17] that any stabiliser state is local-Clifford (LC) equivalent to
a graph state. Since strong contextuality is preserved under LC operators, this is enough to characterise
AvN arguments on stabilisers. From the proof of Theorem 3 we immediately obtain another interesting
result:

Theorem 4. Every AvN argument on an n-partite stabiliser state can be reduced to an AvN proof for a
three-qubit subsystem which is LC-equivalent to the GHZ state.

In other words, not only is the GHZ state, up to LU-equivalence, the only tripartite stabiliser state
admitting an AvN argument, but it actually underlies every AvN proof of contextuality for general n-
partite stabiliser states.

3 Applications

The characterisation given by Theorem 3 allows us to translate the complex conditions needed for an
AvN argument into the simple combinatorial properties of AvN triples. Thanks to this straightforward
description, we can derive a closed formula for the number of possible AvN arguments on n-partite
stabiliser states:

Proposition 5. Let n≥ 3. The number of AvN triples in Pn is given by

1
2 (n+[n])−1

∑
k=1

(
n

2k+1

)(
k+1
k−1

)
·62k+1 ·22n−2k−1,

where [n] ∈ Z2 denotes the parity of n.

More significantly, we can use the AvN triple theorem and the check-vector description of elements
of Pn to develop a computational method to actually identify all the AvN arguments on n-partite stabiliser
states for a sufficiently small n. An implementation of this method using Mathematica [19] can be found
in [5], where we present the algorithm and the resulting list of all 216 AvN triples in P3 and all 19008
AvN triples in P4. By Theorem 3, this list generates all the possible AvN arguments for 3-qubit and
4-qubits stabiliser states.
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